
ndncatchunks Performance Issues

8th NDN Hackathon

Klaus Schneider, Saurab Dulal March 10, 2019

Why bother about catchunks/putchunks?

Why bother about catchunks/putchunks?

1. Catchunks = First application new people use

- 1. Catchunks = First application new people use
- 2. Many larger applications built on ndnchunks

- 1. Catchunks = First application new people use
- 2. Many larger applications built on ndnchunks
- 3. Improvements trickle down into SegmentFetcher

1. Performance. on lossy, high-delay WiFi links

- 1. Performance. on lossy, high-delay WiFi links
- 2. Window decrease > retransmissions?

- 1. Performance. on lossy, high-delay WiFi links
- 2. Window decrease > retransmissions?
- 3. Catchunks exceeds maximum retries

- 1. Performance. on lossy, high-delay WiFi links
- 2. Window decrease > retransmissions?
- 3. Catchunks exceeds maximum retries
- 4. Too many/too little cong. marks? (Unix, UDP)

Experiment Setup

Host — Router (VM) — Server (VM)

Host — Router (VM) — Server (VM)

- VMs: Virtualbox + mini-ndn
- Traffic shaping (tc netem) at router!
- Catchunks vs. Iperf3 (TCP)

Experiment Setup

Host — Router (VM) — Server (VM)

- VMs: Virtualbox + mini-ndn
- Traffic shaping (tc netem) at router!
- Catchunks vs. Iperf3 (TCP)

Variables:

- $1. \ {\sf Bandwidth}$
- 2. Delay
- 3. Jitter
- 4. Buffer Queue Size (qdisc)
- 5. Link Loss

BW=50Mbit, queueSize=300

RTT Catchunks (Mbps)		Iperf (Mbps)
2ms	46.2	48.4
50ms	45.3	47.4
100ms	30.2	32.4

BW=50Mbit, queueSize=300

RTT	Jitter	Catchunks (Mbps)	Iperf (Mbps)
10ms	1ms	45.2	48.1
20ms	2ms	43.3	45.4
100ms	20ms	24.7	37.3

 \Rightarrow Some difference, but not very large! (x1.5)

BW=50Mbit, queueSize=300, delay=20ms

Loss	Catchunks (Mbps)	Iperf (Mbps)
.1%	38.4	38.3
1.0%	11.8	10.1
5.0%	3.5	3.5

BW=50Mbps, qSize=300, delay=60ms, jitter=20ms, loss=1%

BW=50Mbps, qSize=300, delay=60ms, jitter=20ms, loss=1%

 Catchunks:
 3.94 Mbps

 Iperf3:
 7.50 Mbps

 \Rightarrow Higher difference, but still not very large! (x1.9)

The Problem: NFD Performance (1)

No Traffic Shaping

Time elapsed: 9620.52 milliseconds
Total size: 104858kB, 23832 segments
Goodput: 87.194912 Mbit/s
Total # of lost/retx segments: 829 (caused 40 window decr)
Packet loss rate: 3.36158%, cong marks: 10
RTT min/avg/max = 0.833/16.764/125.612 ms

No Traffic Shaping

```
Time elapsed: 9620.52 milliseconds
Total size: 104858kB, 23832 segments
Goodput: 87.194912 Mbit/s
Total # of lost/retx segments: 829 (caused 40 window decr)
Packet loss rate: 3.36158%, cong marks: 10
RTT min/avg/max = 0.833/16.764/125.612 ms
```

IPERF:

[]	ID]	Interval	Transfer	Bandwidth	Retr	Cwnd
Γ	4]	0.00-0.55s	100 MBytes	1.53 Gbps	92	348 KBytes

No Traffic Shaping

```
Time elapsed: 9620.52 milliseconds
Total size: 104858kB, 23832 segments
Goodput: 87.194912 Mbit/s
Total # of lost/retx segments: 829 (caused 40 window decr)
Packet loss rate: 3.36158%, cong marks: 10
RTT min/avg/max = 0.833/16.764/125.612 ms
```

IPERF:

Γ	ID]	Interval	Transfer	Bandwidth	Retr	Cwnd
Γ	4]	0.00-0.55s	100 MBytes	1.53 Gbps	92	348 KBytes

CPU is the limiting factor: Router: 96%, Server: 80% \Rightarrow **NFD,** buffer size, cong. marks, window adaptation?

The Problem: Buffer Queue Size (2)

BW=50Mbit, delay=20ms

Q (Pkts)	Catchunks (Mbps)	Iperf (Mbps)
20	5.7	31.0
50	15.0	46.3
100	37.5	47.8
300	46.8	48.0
1000	47.0	48.2

Large difference: 5.4x lower throughput!

The Problem: Buffer Queue Size (2)

BW=50Mbit, delay=20ms

Q (Pkts)	Catchunks (Mbps)	Iperf (Mbps)
20	5.7	31.0
50	15.0	46.3
100	37.5	47.8
300	46.8	48.0
1000	47.0	48.2

Large difference: 5.4x lower throughput!

Improves slightly with smaller chunk size (1.3KB) 5.7 Mbps \Rightarrow 7.5 Mbps. **???**

The Problem: Delay > 200ms (3)

50MB file, BW=50Mbit, queueSize=1000

RTT	Catchunks (Mbps)	Iperf (Mbps)
100ms	11.8	44.1
150ms	12.4	44.6
200ms	1.4	32.4
300ms	0.9	22.5
400ms	2.2	16.6

Large difference: 25x lower throughput!

The Problem: Delay > 200ms (3)

50MB file, BW=50Mbit, queueSize=1000

RTT	Catchunks (Mbps)	Iperf (Mbps)
100ms	11.8	44.1
150ms	12.4	44.6
200ms	1.4	32.4
300ms	0.9	22.5
400ms	2.2	16.6

Large difference: 25x lower throughput!

What's special about 200ms? \Rightarrow minRTO=200ms!

Hackathon Improvements: Better Statistics (1)

Measure spurious retransmissions!

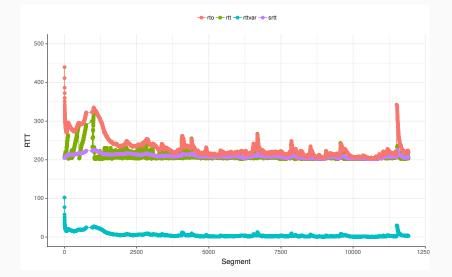
All segments have been received. Time elapsed: 78861.7 milliseconds Total # of segments received: 11916 Total size: 52428.8kB Goodput: 5.318554 Mbit/s

RTO Timeouts: 245 (caused 22 window decreases) Retx segments: 49, skipped: 196

Packet loss rate: 0.409528%
Total # of received congestion marks: 1
RTT min/avg/max = 201.598/207.656/261.004 ms

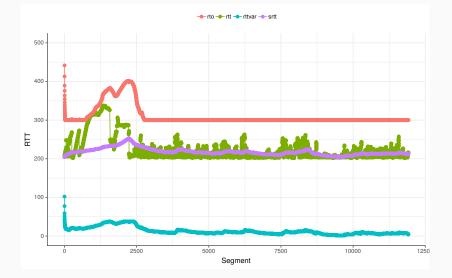
Hackathon Improvements: Better Statistics (1)

Measure spurious retransmissions!

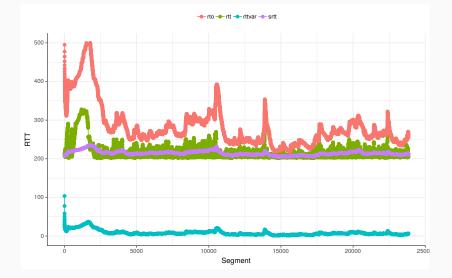

All segments have been received. Time elapsed: 78861.7 milliseconds Total # of segments received: 11916 Total size: 52428.8kB Goodput: 5.318554 Mbit/s

RTO Timeouts: 245 (caused 22 window decreases) Retx segments: 49, skipped: 196

Packet loss rate: 0.409528%
Total # of received congestion marks: 1
RTT min/avg/max = 201.598/207.656/261.004 ms


Explains why sometimes **window decrease** > retx!

Hackathon Improvements: Increase RTO (2)


RTO = sRTT + k * varRTT

Hackathon Improvements: Increase RTO (2)

Increase minRTO to 300ms

Hackathon Improvements: Increase RTO (2)

Increase **k=8.** TP: 5.6 Mbps \Rightarrow **28.6 Mbps** (TCP: 34Mbps)

Delay=400ms, 100MB file

Scen	TP (Mbps)	cwnd dec.	spur. rtx
AIMD, k=4	2.3	61	308
CUBIC, k=4	8.8	27	260
CUBIC, k=6	12.7	7	123
CUBIC, k=8	14.6	7	5
ТСР	16.1	-	-

1. Increase retry limit from 3 to 15!

- 1. Increase retry limit from 3 to 15!
- 2. Look into small buffer size issue!
 - Timeouts: > 1000 in NDN vs 80 in TCP
 - Increasing k & CUBIC doesn't help

- 1. Increase retry limit from 3 to 15!
- 2. Look into small buffer size issue!
 - Timeouts: > 1000 in NDN vs 80 in TCP
 - Increasing k & CUBIC doesn't help
- 3. Tune congestion marks (UDP + Unix sockets)

- 1. Increase retry limit from 3 to $\boldsymbol{15!}$
- 2. Look into small buffer size issue!
 - Timeouts: > 1000 in NDN vs 80 in TCP
 - Increasing k & CUBIC doesn't help
- 3. Tune congestion marks (UDP + Unix sockets)
- 4. Test with Mini-NDN WiFi

Any Questions?

Klaus Schneider, Saurab Dulal